If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-5t-1=0
a = 1; b = -5; c = -1;
Δ = b2-4ac
Δ = -52-4·1·(-1)
Δ = 29
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{29}}{2*1}=\frac{5-\sqrt{29}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{29}}{2*1}=\frac{5+\sqrt{29}}{2} $
| (11+2x)=180 | | x²=(x+5)²-9² | | -1/5(5x-15)=3/4(-8x+12) | | 21x=90 | | 25x+75Y+200=500 | | (4x-5)=90 | | x2+3x+2.25=6.75 | | (5y+35)+(11y-7)=180 | | 3/(2x-1)=2/(1-x) | | 3x+12÷4x+11=0 | | p2-2p+1.2544=0 | | p2-2p+2=0 | | 2(x+1)=x-4(2x-3) | | 2(x+1)=x-4(2x-3) | | (4x+4)+(6x-4)=90 | | (4x+4)+(6x-4)=180 | | (x+5)/3=(2-x)/4-2 | | (x+5)/3=(2-x)4-2 | | 32-2x/12-4x+2/3=30-7x/4 | | 4(y-3)-2y=28 | | 5^x+3=1000 | | 2(x-1)-3(3x-4)=5x+2 | | 5y+7+2=90 | | 5y+9=90 | | 16x-12=15-5x | | 18x-55=-1 | | x÷15=2 | | (5y+7)+(y+2)=90 | | 2x−8=x+9 | | -16-14a+-21=23-2a | | 4x-8-3x+9=0 | | 2x-5/x+2=-8/5 |